Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 21(1): 574, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34872519

RESUMO

BACKGROUND: Drought has become a dangerous threat to reduce crop productivity throughout the world. Exogenous applications of regulators, micronutrients, and/or osmoprotectants for inducing drought-tolerance in field crops have been effectively adopted. A controlled pot study was performed to investigate the relative efficacy of salicylic acid (SA), zinc (Zn), and glycine betaine (GB) as foliar applications on the growth, tissues pigments content, relative water content (RWC), leaf gas-exchange, antioxidant enzymes activity, reactive oxygen species (ROS) accumulation, osmolytes contents, and the yield parameters of wheat plants subjected to two soil water conditions (85% field capacity: well-watered, 50% field capacity: water-deficient) during reproductive growth stages. RESULTS: Water deficient conditions significantly decreased the growth, yield parameters, RWC, photosynthesis pigment, and gas-exchange attributes except for intercellular CO2 concentration. However, foliar applications remarkably improved the growth and yield parameters under water deficit conditions. Under drought condition, exogenous applications of SA, Zn, and GB increased the grain yield pot- 1 by 27.99, 15.23 and 37.36%, respectively, as compared to the control treatment. Drought stress statistically increased the contents of hydrogen peroxide (H2O2), superoxide anion radical (O2 •-), and malonaldehyde (MDA), and elevated the harmful oxidation to cell lipids in plants, however, they were considerably reduced by foliar applications. Foliar applications of SA, Zn, and GB decreased MDA content by 29.09, 16.64 and 26.51% under drought stress, respectively, as compared to the control treatment. Activities of all antioxidant enzymes, proline content, and soluble sugar were increased in response to foliar applications under water deficit conditions. CONCLUSIONS: Overall, foliar application of GB, SA, and Zn compounds improved the drought-tolerance in wheat by decreasing the ROS accumulation, promoting enzymatic antioxidants, and increasing osmolytes accumulation. Finally, GB treatment was most effective in thoroughly assessed parameters of wheat followed by SA and Zn applications to alleviate the adverse effects of drought stress.


Assuntos
Betaína/farmacologia , Secas , Ácido Salicílico/farmacologia , Triticum/crescimento & desenvolvimento , Zinco/farmacologia , Clorofila/metabolismo , Fotossíntese , Solo , Estresse Fisiológico/efeitos dos fármacos , Triticum/efeitos dos fármacos
2.
Plant Mol Biol ; 107(1-2): 21-36, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34302568

RESUMO

KEY MESSAGE: NtARF6 overexpression represses nicotine biosynthesis in tobacco. Transcriptome analysis suggests that NtARF6 acts as a regulatory hub that connect different phytohormone signaling pathways to antagonize the jasmonic acid-induced nicotine biosynthesis. Plant specialized metabolic pathways are regulated by a plethora of molecular regulators that form complex networks. In Nicotiana tabacum, nicotine biosynthesis is regulated by transcriptional activators, such as NtMYC2 and the NIC2-locus ERFs. However, the underlying molecular mechanism of the regulatory feedback is largely unknown. Previous research has shown that NbARF1, a nicotine synthesis repressor, reduces nicotine accumulation in N. benthamiana. In this study, we demonstrated that overexpression of NtARF6, an ortholog of NbARF1, was able to reduce pyridine alkaloid accumulation in tobacco. We found that NtARF6 could not directly repress the transcriptional activities of the key nicotine pathway structural gene promoters. Transcriptomic analysis suggested that this NtARF6-induced deactivation of alkaloid biosynthesis might be achieved by the antagonistic effect between jasmonic acid (JA) and other plant hormone signaling pathways, such as ethylene (ETH), salicylic acid (SA), abscisic acid (ABA). The repression of JA biosynthesis is accompanied by the induction of ETH, ABA, and SA signaling and pathogenic infection defensive responses, resulting in counteracting JA-induced metabolic reprogramming and decreasing the expression of nicotine biosynthetic genes in vivo. This study provides transcriptomic evidence for the regulatory mechanism of the NtARF6-mediated repression of alkaloid biosynthesis and indicates that this ARF transcription factor might act as a regulatory hub to connect different hormone signaling pathways in tobacco.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Nicotiana/genética , Nicotina/biossíntese , Proteínas de Plantas/genética , Alcaloides/metabolismo , Sequência de Aminoácidos , Vias Biossintéticas/genética , Análise por Conglomerados , Ontologia Genética , Genes Reguladores , Genoma de Planta , Especificidade de Órgãos/genética , Filogenia , Células Vegetais/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/metabolismo , Transcriptoma/genética
3.
Environ Sci Pollut Res Int ; 26(19): 19261-19271, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31065988

RESUMO

Cadmium (Cd) contamination in agricultural soils is a prevalent environmental issue and poses potential threats to food security. Foliar ascorbic acid might prove a potent tool to alleviate toxicity of Cd toxicity in maize. An experiment was conducted with objectives to study exogenous ascorbic acid-modulated improvements in physiochemical attributes of maize under Cd toxicity. The experiment was conducted under completely randomized design. Treatments were comprised of varying concentrations of foliar ascorbic acid viz. 0.0, 0.1, 0.3, and 0.5 mM of AsA. Toxicity of Cd decreased the maize growth, increased lipid peroxidation, disturbed protein metabolism, and reduced the antioxidant defense capabilities compared with the control. However, foliar AsA significantly improved maize growth and development, photosynthetic capabilities, and protein concentrations in Cd-stressed maize plants. Meanwhile, the malondialdehyde contents and hydrogen peroxide accumulation levels in Cd-stressed maize plants decreased remarkably with increasing AsA concentrations. Furthermore, the combined treatments conspicuously boosted activities of superoxide dismutase, peroxidase, catalase, and glutathione reductase under the Cd stress alone. In addition, the application of AsA reduced the Cd uptake by 10.3-12.3% in grains. Conclusively, foliar ascorbic acid alleviated the negative effects of Cd stress in maize and improved photosynthetic processes, osmolytes, and antioxidant defense systems.


Assuntos
Antioxidantes/metabolismo , Ácido Ascórbico/farmacologia , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Zea mays/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Cádmio/metabolismo , Relação Dose-Resposta a Droga , Peroxidação de Lipídeos/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Distribuição Aleatória , Poluentes do Solo/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
4.
Environ Sci Pollut Res Int ; 23(17): 17132-41, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27215981

RESUMO

Drought stress is one of the major environmental factors responsible for reduction in crop productivity. In the present study, responses of two maize cultivars (Rung Nong 35 and Dong Dan 80) were examined to explicate the growth, yield, leaf gas exchange, leaf water contents, osmolyte accumulation, membrane lipid peroxidation, and antioxidant activity under progressive drought stress. Maize cultivars were subjected to varying field capacities (FC) viz., well-watered (80 % FC) and drought-stressed (35 % FC) at 45 days after sowing. The effects of drought stress were analyzed at 5, 10, 15, 20, ad 25 days after drought stress (DAS) imposition. Under prolonged drought stress, Rung Nong 35 exhibited higher reduction in growth and yield as compared to Dong Dan 80. Maize cultivar Dong Dan 80 showed higher leaf relative water content (RWC), free proline, and total carbohydrate accumulation than Run Nong 35. Malondialdehyde (MDA) and superoxide anion were increased with prolongation of drought stress, with higher rates in cultivar Run Nong 35 than cultivar Dong Dan 80. Higher production of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) and glutathione reductase (GR) resulted in improved growth and yield in Dong Dan 80. Overall, the cultivar Dong Dan 80 was better able to resist the detrimental effects of progressive drought stress as indicated by better growth and yield due to higher antioxidant enzymes, reduced lipid peroxidation, better accumulation of osmolytes, and maintenance of tissue water contents.


Assuntos
Antioxidantes/metabolismo , Zea mays/crescimento & desenvolvimento , Catalase/metabolismo , Secas , Glutationa Redutase/metabolismo , Peroxidação de Lipídeos , Malondialdeído/metabolismo , Peroxidase/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Prolina/metabolismo , Estresse Fisiológico , Superóxido Dismutase/metabolismo , Água , Zea mays/metabolismo
5.
Environ Sci Pollut Res Int ; 23(12): 11864-75, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26957429

RESUMO

An investigation was carried out to examine the combined and individual effects of cadmium (Cd) and arsenic (As) stress on osmolyte accumulation, antioxidant activities, and reactive oxygen species (ROS) production at different growth stages (45, 60, 75, 90 days after sowing (DAS)) of two maize cultivars viz., Dong Dan 80 and Run Nong 35. The Cd (100 µM) and As (200 µM) were applied separately as well as in combination (Cd + As) at 30 DAS. Results revealed pronounced variations in the behavior of antioxidants, osmolytes, and ROS in both maize cultivars under the influence of Cd and As stress. Activities of enzymatic (SOD, POD, CAT and APX, GPX, GR) and non-enzymatic (GSH and AsA) antioxidants, generation of ROS, and accumulation of osmolytes were enhanced with the passage of time; therefore, the maximum values for these attributes were observed at 90 DAS for both cultivars. Exposure of plants to Cd or As stress considerably enhanced the antioxidant activities, ROS, and osmolyte accumulation compared with control, while combined application of Cd + As was more devastating in reducing plant biomass of both maize cultivars. Among cultivars, Dong Dan 80 was better able to negate the heavy metal-induced oxidative damage, which was associated with higher antioxidant activities, greater osmolytes accumulation, and lower ROS production in this cultivar.


Assuntos
Antioxidantes/metabolismo , Arsênio/farmacologia , Cádmio/farmacologia , Osmorregulação/efeitos dos fármacos , Poluentes do Solo/farmacologia , Zea mays/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Estresse Fisiológico , Zea mays/efeitos dos fármacos
6.
Environ Sci Pollut Res Int ; 22(21): 17022-30, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26122572

RESUMO

Increased cadmium (Cd) accumulation in soils has led to tremendous environmental problems, with pronounced effects on agricultural productivity. Present study investigated the effects of Cd stress imposed at various concentrations (0, 75, 150, 225, 300, 375 µM) on antioxidant activities, reactive oxygen species (ROS), Cd accumulation, and productivity of two maize (Zea mays L.) cultivars viz., Run Nong 35 and Wan Dan 13. Considerable variations in Cd accumulation and in behavior of antioxidants and ROS were observed under Cd stress in both maize cultivars, and such variations governed by Cd were concentration dependent. Exposure of plant to Cd stress considerably increased Cd concentration in all plant parts particularly in roots. Wan Dan 13 accumulated relatively higher Cd in root, stem, and leaves than Run Nong 35; however, in seeds, Run Nong 35 recorded higher Cd accumulation. All the Cd toxicity levels starting from 75 µM enhanced H2O2 and MDA concentrations and triggered electrolyte leakage in leaves of both cultivars, and such an increment was more in Run Nong 35. The ROS were scavenged by the enhanced activities of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and glutathione peroxidase in response to Cd stress, and these antioxidant activities were higher in Wan Dan 13 compared with Run Nong 35 at all Cd toxicity levels. The grain yield of maize was considerably reduced particularly for Run Nong 35 under different Cd toxicity levels as compared with control. The Wan Dan 13 was better able to alleviate Cd-induced oxidative damage which was attributed to more Cd accumulation in roots and higher antioxidant activities in this cultivar, suggesting that manipulation of these antioxidants and enhancing Cd accumulation in roots may lead to improvement in Cd stress tolerance.


Assuntos
Antioxidantes , Cádmio , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio , Zea mays , Antioxidantes/análise , Antioxidantes/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Oxirredutases/análise , Oxirredutases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Sementes/efeitos dos fármacos , Sementes/metabolismo , Zea mays/química , Zea mays/efeitos dos fármacos , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA